Part Number Hot Search : 
0EVKI UPD65882 4HC15 C2R01T 0KPA60 FAN8001 C20DT AN921
Product Description
Full Text Search
 

To Download SCM1246MF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  500v / 600v h igh v oltage t hree - phase m otor d river ic s scm1200mf series data sheet scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 1 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 d escription the scm1200mf series are high voltage three - phase motor driver ic s in which transistors, pre - driver ics (mics), and bootstrap circuits (diodes and resistors) are highly integrated. these products can run on a three - shunt current detection system and optimally control the inverter systems of medium - capacity motors that require universal input standards . features each half - bridge circuit consists of a pre - driver ic in case of malfunction , all outputs shut down via three fo pins connected together built - in b ootstrap diodes with current limmiting resistors (22 ? ) cmos compatible input (3.3 to 5 v) pb free isolation voltage: 2 5 00 v for 1 min , ul r ecognized c omponent (file no.: e118037) fault signal output at protection activation protections include: undervoltage lockout for power supply high - side ( uvlo _vb): auto - restart low - side ( uvlo _vcc): auto - restart overcurrent protection (ocp): auto - restart simultaneous o n - s tate p revention : auto - restart thermal shutdown (tsd): auto - restar t typical application diagram package scm (pin pitch : 1.27 mm , mold dimensions : 47 19 4 .4 mm ) not to s cale scm1200mf series igbt+frd (600 v) i o (a) feature part number 10 a low noise scm12 61 m f* 15 a low noise scm1242mf scm12 6 3mf * low switching dissipation scm1243mf 20 a low noise scm12 6 5m f* low switching dissipation scm1245mf 30 a low noise scm12 5 6mf low switching dissipation SCM1246MF * uses a shorter blanking time for ocp activation. application s for motor drives such as: refrigerator compressor motor air conditioner compressor motor washing machine main motor fan motor p ump motor ??` L ? ??` L ? v c c m i c 1 v b 1 f o 1 o c p 1 l i n 1 c o m 1 h i n 1 v c c 1 h s 1 v b b w l s 3 v l s 2 u l s 1 c o n t r o l l e r i n t a / d 1 c o m v b 2 f o 2 o c p 2 l i n 2 c o m 2 h i n 2 v c c 2 h s 2 v b 3 f o 3 o c p 3 l i n 3 c o m 3 h i n 3 v c c 3 h s 3 v f o m i c 2 m i c 3 1 3 4 5 6 7 9 8 1 1 1 2 1 4 1 3 1 5 1 6 1 7 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 8 2 9 3 1 3 2 3 3 a / d 2 a / d 3 m 2 7 1 8 1 0 2 3 0 v d c l i n 1 h i n 1 l i n 2 h i n 2 l i n 3 h i n 3 r f o c f o c b o o t 1 c b o o t 2 c b o o t 3 r s 1 r s 2 r s 3 r o 1 r o 3 r o 3 c o 3 c o 2 c o 1 u 1 s c m 1 2 0 0 m f s e r i e s
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 2 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 contents description -------------------------------- -------------------------------- -------------------------------- ------ 1 contents -------------------------------- -------------------------------- -------------------------------- ---- 2 1. absolute maximum ratings -------------------------------- -------------------------------- ------------- 4 2. rec ommended operating conditions -------------------------------- -------------------------------- - 5 3. electrical characteristics -------------------------------- -------------------------------- ---------------- 6 3.1. characteristics of control parts -------------------------------- -------------------------------- -- 6 3.2. bootstrap diode characteristics -------------------------------- -------------------------------- - 7 3.3. thermal resistance characteristics -------------------------------- ----------------------------- 7 3.4. transistor characteristics -------------------------------- -------------------------------- --------- 8 3.4.1. scm1261mf -------------------------------- -------------------------------- ------------------- 8 3.4.2. scm1242mf -------------------------------- -------------------------------- ------------------- 9 3.4.3. scm1263mf -------------------------------- -------------------------------- ------------------- 9 3.4.4. scm1243mf -------------------------------- -------------------------------- ----------------- 10 3.4.5. scm1265mf -------------------------------- -------------------------------- ----------------- 10 3.4.6. scm1245mf -------------------------------- -------------------------------- ----------------- 11 3.4.7. scm1256mf -------------------------------- -------------------------------- ----------------- 11 3.4.8. SCM1246MF -------------------------------- -------------------------------- ----------------- 12 4. mechanical ch aracteristics -------------------------------- -------------------------------- ----------- 13 5. insulation distance -------------------------------- -------------------------------- ---------------------- 13 6. truth t able -------------------------------- -------------------------------- ------------------------------- 14 7. block diagram -------------------------------- -------------------------------- --------------------------- 15 8. pin - out diagram -------------------------------- -------------------------------- ------------------------- 16 9. typical applications -------------------------------- -------------------------------- -------------------- 17 10. exte rnal dimensions -------------------------------- -------------------------------- -------------------- 19 10.1. lf2552 -------------------------------- -------------------------------- ------------------------------- 19 10.2. lf2557 (long lead type) -------------------------------- -------------------------------- ------- 20 10 .3. lf2558 (wide lead - forming type) -------------------------------- --------------------------- 21 10.4. recommended pcb hole size -------------------------------- -------------------------------- -- 22 11. marking diagram -------------------------------- -------------------------------- ----------------------- 22 12. functional descriptions -------------------------------- -------------------------------- ---------------- 23 12.1. turning on and off the ic -------------------------------- -------------------------------- ------ 23 12.2. pin descriptions -------------------------------- -------------------------------- ------------------- 23 12.2.1. u, v, and w -------------------------------- -------------------------------- ------------------- 23 12.2.2. vb1, vb2, and vb3 -------------------------------- -------------------------------- --------- 23 12.2.3. hs1, hs2, and hs3 -------------------------------- -------------------------------- --------- 24 12.2.4. vcc1, vcc2, and vcc3 -------------------------------- -------------------------------- -- 24 12.2 .5. com1, com2, and com3 -------------------------------- -------------------------------- 24 12.2.6. hin1, hin2, hin3, lin1, lin2, and lin3 -------------------------------- ------------ 25 12.2.7. vbb -------------------------------- -------------------------------- ---------------------------- 25 12.2.8. ls1, ls2, an d ls3 -------------------------------- -------------------------------- ---------- 26 12.2.9. ocp1, ocp2, and ocp3 -------------------------------- -------------------------------- --- 26 12.2.10. fo1, fo2, and fo3 -------------------------------- -------------------------------- --------- 26 12.3. protection functions -------------------------------- -------------------------------- -------------- 27 12.3.1 . fault signal output -------------------------------- -------------------------------- --------- 27 12.3.2. shutdown signal input -------------------------------- -------------------------------- ----- 27 12.3.3. undervoltage lockout for power supply (uvlo) -------------------------------- --- 28 12.3.4. overcurrent protection (ocp) -------------------------------- --------------------------- 28 12.3.5. simultaneous on - state prevention -------------------------------- ----------------------- 30 12.3.6. thermal shutdown (tsd) -------------------------------- -------------------------------- - 30
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 3 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 13. design notes -------------------------------- -------------------------------- ------------------------------ 31 13.1. pcb pattern layout -------------------------------- -------------------------------- -------------- 31 13.2. heatsink mounting considerations -------------------------------- ---------------------------- 31 13.3. ic characteristics measurement considerations -------------------------------- ----------- 31 14. calculating power losses and estimating junction temperatures --------------------------- 32 14.1. igbt steady - state loss, p on -------------------------------- -------------------------------- --- 32 14.2. gbt switching loss, p sw -------------------------------- -------------------------------- -------- 33 14.3. estimating junction temperature of igbt -------------------------------- ------------------ 33 15. typical characteristics -------------------------------- -------------------------------- ----------------- 34 15.1. transient thermal resistance curves -------------------------------- ------------------------ 34 15.1.1. scm1261mf -------------------------------- -------------------------------- ----------------- 34 15.1.2. scm124 2mf, scm1263mf, scm1243mf -------------------------------- ------------ 34 15.1.3. scm1265mf, scm1245mf -------------------------------- ------------------------------ 35 15.1.4. SCM1246MF, scm1256mf -------------------------------- ------------------------------ 35 15.2 . performance curves of control parts -------------------------------- ------------------------- 36 15.3. performance curves of output parts -------------------------------- ------------------------- 41 15.3.1. output transistor performance curves -------------------------------- ---------------- 41 15.3.2. switching loss -------------------------------- -------------------------------- --------------- 43 15.4. allowable effective current curves -------------------------------- --------------------------- 51 15.4.1. scm1261mf -------------------------------- -------------------------------- ----------------- 51 15.4.2. scm124 2mf , scm1263mf , scm1243mf -------------------------------- ------------ 52 15.4.3. scm1265mf , scm1245mf -------------------------------- ------------------------------ 53 15.4.4. scm1256mf , SCM1246MF -------------------------------- ------------------------------ 54 15.5 . short circuit soa (safe operating area) -------------------------------- ------------------- 55 15.5.1. scm1261mf -------------------------------- -------------------------------- ----------------- 55 15.5.2. scm1242mf, scm1263mf, scm1243mf -------------------------------- ------------ 55 15.5.3. scm1265mf, scm1245mf -------------------------------- ------------------------------ 56 15.5.4. scm1256mf, SCM1246MF -------------------------------- ------------------------------ 56 16. pattern layout example -------------------------------- -------------------------------- --------------- 57 17. typical motor driver application -------------------------------- -------------------------------- --- 59 important notes -------------------------------- -------------------------------- --------------------- 60
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 4 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 1. absolute maximum ratings c urrent polarities are defined as follows: a current flow going into the ic (sinking) is positive current (+); and a current flow coming out of the ic (sourcing) is negative current ( ? ). unless specifically noted , t a = 25c . characteristics symbol condition s rating unit remarks main supply voltage (dc) v dc vbb C ls 1 vbb C ls 2 vbb C ls 3 4 5 0 v main supply voltage (surge) v dc(s urge ) vbb C ls 1 vbb C ls 2 vbb C ls 3 500 v igbt breakdown voltage v ces v cc = 15 v, i c = 1 ma, v in = 0 v 6 00 v logic s upply voltage v cc v cc1 C com1 v cc2 C com2 v cc3 C com3 20 v v bs vb1 C hs1(u) vb2 C hs2(v) vb3 C hs3(w ) 20 output current (dc) ( 1 ) i o t c = 25 c 10 a scm12 61mf 15 scm12 4 2mf /63mf/ 43mf 20 scm12 65mf/ 45mf 30 scm12 56mf/ 46mf output current (pulse) i op t c = 25 c, p w 1ms 20 a scm12 61mf 30 scm12 4 2mf /63mf/ 43mf /65mf/ 45mf 45 scm12 56mf/ 46mf input voltage v in hin1, lin1 C com1 hin2, lin2 C com2 hin3, lin3 C com3 ? fo pin voltage v fo fo1 C com1 fo2 C com2 fo3 C com3 ? ocp pin voltage v ocp ocp1 C com1 ocp2 C com2 ocp3 C com3 ? operating case temperature ( 2 ) t c(op) ? junction temperature ( 3 ) t j 150 c storage temperature t stg ? isolation voltage ( 4 ) v iso(rms) between surface of heatsink side an d each pin; ac, 60 hz, 1 min 2 5 00 v ( 1 ) s ho uld be derated depen ding on an actual case temperature . see section 15.4 . ( 2 ) refers to a case temperature measured during ic operation. ( 3 ) refers to the junction temperature of each chip including its built - in cont r oller ics (mics) , transistors, and freewheeling diode s. ( 4 ) refers to v oltage conditions to be applied b etween the case and all pins . all pins have to be shorted.
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 5 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 2. recommended operating conditions characteristics symbol conditions min. typ. max. unit remarks main supply voltage v dc com1 = com2 = com3 vbb C com 300 4 00 v logic s upply voltage v cc v cc1 C com1 v cc2 C com2 v cc3 C com3 13.5 16.5 v v bs vb1 C hs1(u) vb2 C hs2(v) vb3 C hs3(w) 13.5 16.5 v input voltage (hin, lin, fo) v in 0 5.5 v minimum input pulse width t in (min)on 0.5 s t in (min)off 0.5 s dead time of input signal t dead 1.0 s scm 12 43 mf/ 45 mf/ 46 mf 1. 5 scm12 42mf/ 56mf /61mf/65mf fo pin pull - up resistor r fo 1 22 k fo pin pull - up voltage v fo 3.0 5.5 v fo pin capacitor for noise reduction c fo 0.001 0.01 f bootstrap capacitor c boot 10 220 f shunt resistor r s i p 45 a 12 m scm12 56mf/ 46mf i p 30 a 18 scm12 42mf/ 43 mf/ 63mf /65mf/ 45mf i p 20 a 27 scm12 61mf rc filter resistor r o 100 rc filter capacitor c o 1000 2200 pf scm124 x mf scm125 x mf 1000 10000 scm126 x mf pwm carrier frequency f c 20 khz case temperature in operation t c(op) 100 c
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 6 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 3. electrical characteristics c urrent polarities are defined as follows: a current flow going into the ic (sinking) is positive current (+); and a current flow coming out of the ic (sourcing) is negative current ( ? ). unless specifically noted , t a = 25c , v cc = 15 v . 3.1. characteristics of control parts characteristics symbol condit ions min. typ. max. unit remarks power supply operation logic operation start voltage v cc(on) v cc1 C com1 v cc2 C com2 v cc3 C com3 10.5 11.5 12.5 v v bs(on) vb1 C hs1(u) vb2 C hs2(v) vb3 C hs3(w) 10.5 11.5 12.5 v logic operation stop voltage v cc(off) v cc1 C com1 v cc2 C com2 v cc3 C com3 10.0 11.0 12.0 v v bs(off) vb1 C hs1(u) vb2 C hs2(v) vb3 C hs3(w) 10.0 11.0 12.0 v logic supply current i cc vcc1 = vcc2 = vcc3, com1 = com2 = com3 vcc pin current in 3 phases operating 3 ma i bs vb C hs = 15 v , hin = 5 v , vb pin current in single phase operation 140 a input signal high level input signal threshold voltage (hin, lin, fo) v ih 1.5 2.0 2.5 v low level input signal threshold voltage (hin, lin, fo) v il 1.0 1.5 2.0 v input current at high level (hin, lin) i ih v in = 5 v 230 500 a input current at low level (hin, lin) i il v in = 0 v 2 a fault signal output fo pin voltage in fault signal output v fol v fo = 5 v, r fo = 10 k 0.5 v fo pin voltage in normal operation v foh v fo = 5 v, r fo = 10 k 4.8 v protection overcurrent protection threshold voltage v trip 0.46 0.50 0.54 v overcurrent protection hold time t p 20 26 s overcurrent protection blanking time t bk v trip = 1 v 1.65 s scm124 x mf scm125 x mf 0.54 scm126 x mf thermal shutdown operating temperature * t dh 135 150 c thermal shutdown releasing temperature * t dl 105 120 c * refers to the junction temperature of the built - in controller ics (mics).
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 7 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 3.2. bootstrap diode characteristics characteristics symbol conditions min. typ. max. unit remarks bootstrap diode leakage current i lbd v r = 600 v ? ? 10 a bootstrap diode forward voltage v fb i fb = 0.15 a ? 1.1 1.3 v bootstrap diode series resistor r b oot 17.6 22.0 26.4 3.3. thermal resistance characteristics characteristics symbol conditions min. typ. max. unit remarks junction - to - case thermal resistance ( 1 ) r (j - c)q ( 2 ) 1 element operation ( igbt ) 3.7 c/w scm12 61mf 3 scm12 /4 2mf /63mf/ 43mf /65mf / 45mf /56mf/ 46mf r (j - c)f ( 3 ) 1 element operation ( freewheel ing diode ) 4.5 c/w scm12 61mf 4 scm12 /4 2mf /63mf/ 43mf /65mf / 45mf /56mf/ 46mf ( 1 ) refers to a case temperature at the measurement point described in figure 3 - 1 , below. ( 2 ) refers to steady - state thermal resistance betwee n the junction of the built - in transistors and the case. for t ransient t hermal characteristics, see section 15.1 . ( 3 ) refers to steady - state t hermal resistance betwee n the junction of the built - in freewheeling diodes and the case. figure 3 - 1 . case temperature m easurement point m e a s u r e m e n t p o i n t 1 2 4 3 3 1 5
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 8 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 3.4. transistor characteristics figure 3 - 2 . switching time d efinition 3.4.1. scm12 61 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 10 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 10 a,v in = 0 v 1.7 2.2 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 10 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 85 ? ns turn - on delay time t d(on) ? 700 ? ns rise time t r ? 100 ? ns turn - off delay time t d(off) ? 1070 ? ns fall time t f ? 90 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 10 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 105 ? ns turn - on delay time t d(on) ? 710 ? ns rise time t r ? 120 ? ns turn - off delay time t d(off) ? 1010 ? ns fall time t f ? 95 ? ns i n 1 0 % 9 0 % t d ( o n ) t r t o n i d t r r v d s 1 0 % 9 0 % t d ( o ) t t o
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 9 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 3.4.2. scm12 42 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 15 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 15 a,v in = 0 v 1.75 2.2 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 15 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 80 ? ns turn - on delay time t d(on) ? 700 ? ns rise time t r ? 100 ? ns turn - off delay time t d(off) ? 1300 ? ns fall time t f ? 90 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 1 5 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 90 ? ns turn - on delay time t d(on) ? 700 ? ns rise time t r ? 130 ? ns turn - off delay time t d(off) ? 1230 ? ns fall time t f ? 90 ? ns 3.4.3. scm12 63 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 15 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 15 a,v in = 0 v 1.75 2.2 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 15 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 80 ? ns turn - on delay time t d(on) ? 700 ? ns rise time t r ? 100 ? ns turn - off delay time t d(off) ? 1300 ? ns fall time t f ? 90 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 1 5 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 90 ? ns turn - on delay time t d(on) ? 700 ? ns rise time t r ? 130 ? ns turn - off delay time t d(off) ? 1230 ? ns fall time t f ? 90 ? ns
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 10 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 3.4.4. scm12 43 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 15 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 15 a,v in = 0 v 1.75 2.2 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 15 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 70 ? ns turn - on delay time t d(on) ? 600 ? ns rise time t r ? 70 ? ns turn - off delay time t d(off) ? 620 ? ns fall time t f ? 60 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 1 5 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 80 ? ns turn - on delay time t d(on) ? 600 ? ns rise time t r ? 100 ? ns turn - off delay time t d(off) ? 600 ? ns fall time t f ? 70 ? ns 3.4.5. scm12 65 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 20 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 20 a,v in = 0 v 1.9 2.4 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 20 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 80 ? ns turn - on delay time t d(on) ? 780 ? ns rise time t r ? 120 ? ns turn - off delay time t d(off) ? 1150 ? ns fall time t f ? 90 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 2 0 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 85 ? ns turn - on delay time t d(on) ? 810 ? ns rise time t r ? 170 ? ns turn - off delay time t d(off) ? 1100 ? ns fall time t f ? 90 ? ns
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 11 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 3.4.6. scm12 45 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 20 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 20 a,v in = 0 v 1.9 2.4 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 20 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 75 ? ns turn - on delay time t d(on) ? 695 ? ns rise time t r ? 95 ? ns turn - off delay time t d(off) ? 675 ? ns fall time t f ? 55 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 2 0 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 115 ? ns turn - on delay time t d(on) ? 715 ? ns rise time t r ? 1 3 5 ? ns turn - off delay time t d(off) ? 670 ? ns fall time t f ? 50 ? ns 3.4.7. scm12 56 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 30 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 30 a,v in = 0 v 1.9 2.4 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 30 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 70 ? ns turn - on delay time t d(on) ? 760 ? ns rise time t r ? 130 ? ns turn - off delay time t d(off) ? 1260 ? ns fall time t f ? 90 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 3 0 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 80 ? ns turn - on delay time t d(on) ? 770 ? ns rise time t r ? 160 ? ns turn - off delay time t d(off) ? 1200 ? ns fall time t f ? 90 ? ns
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 12 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 3.4.8. scm12 46 m f characteristics symbol conditions min. typ. max. unit collector - to - emitter leakage current i ces v ce = 600 v, v in = 0 v ? ? 1 ma collector - to - emitter saturation voltage v ce( sat ) i c = 30 a, v in = 5 v 1.7 2.2 v emitter - to - collector diode forward voltage v f i f = 30 a,v in = 0 v 1.9 2.4 v high - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 30 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 60 ? ns turn - on delay time t d(on) ? 660 ? ns rise time t r ? 110 ? ns turn - off delay time t d(off) ? 700 ? ns fall time t f ? 50 ? ns low - side switching emitter - to - collector diode reverse recovery time t rr v dc = 300 v , i c = 3 0 a, i nductive load , v in = 0 5 v or 5 0 v , t j = 25c ? 70 ? ns turn - on delay time t d(on) ? 660 ? ns rise time t r ? 150 ? ns turn - off delay time t d(off) ? 690 ? ns fall time t f ? 50 ? ns
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 13 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 4. mechanical characteristics characteristics conditions min. typ. max. unit remarks heatsink mounting screw torque see footnote below.* 0. 588 0. 784 n?m flatness of heatsink attachment area see figure 4 - 1 . 0 200 m package weight 11.8 g * when mounting a heatsink, it is recommended to use a metric screw of m3 and a plain washer of 7 mm ( ) together at each end of it. see section 13.2 for more details about screw tighten ing. figure 4 - 1 . flatness m easuremen t p osition 5. i nsulation distance characteristics conditions min. typ. max. unit remarks clearance between heatsink* and leads . see figure 5 - 1 . 2.0 2.5 mm creepage 3.86 4.26 mm * refers to when a heatsink to be mounted is flat. if your application requires a clearance exceeding the maximum distance given above, use an alternative (e.g., a convex heatsink) that will meet the target requirement . figure 5 - 1 . i nsulation distance definition h e a t s i n k + - + - h e a t s i n k m e a s u r e m e n t p o s i t i o n c l e a r a n c e c r e e p a g e h e a t s i n k
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 14 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 6. truth t able table 6 - 1 is a truth table that provides the logic level definitions of o peration mode s . in the case where hin and lin signals in each phase are high at the same time, the s imultaneous on - state p revention function sets both the high - side and low - side transistors off. after recovering from a uvlo_vcc condition, the high - side and low - side transistors resume switching according to the input logic levels of the next hin and lin signals (level - triggere d). after recovering from a uvlo_vb condition, the high - side transistors resume switching at the next rising edge of an hin signal (edge - triggered). table 6 - 1 . truth t able for operation modes mode hin lin h ig h - side t ransistors l ow - side t ransistors normal operation l l off off h l on off l h off on h h off off external shutdown signal input fo = l l l off off h l off off l h off off h h off off high - side u ndervoltage lockout for p ower s upply ( uvlo _ vb) l l off off h l off off l h off on h h off off low - side u ndervoltage lockout for p ower s upply ( uvlo _ vcc ) l l off off h l off off l h off off h h off off overcurrent protection ( ocp ) l l off off h l off off l h off off h h off off thermal shutdown ( tsd ) l l off off h l off off l h off off h h off off
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 15 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 7. block diagram v b 1 f o 1 o c p 1 l i n 1 c o m 1 h i n 1 v c c 1 h s 1 v b b w l s 3 v l s 2 u l s 1 v b 2 f o 2 o c p 2 l i n 2 c o m 2 h i n 2 v c c 2 h s 2 v b 3 f o 3 o c p 3 l i n 3 c o m 3 h i n 3 v c c 3 h s 3 1 3 4 5 8 2 5 2 6 2 8 2 9 3 1 3 2 3 3 2 7 2 i n p u t l o g i c s i m u l t a n e o u s o n s t a t e p r e v e n t i o n u v l o _ v c c d r i v e c i r c u i t d r i v e c i r c u i t t s d o c p l e v e l s h i f t 6 7 i n p u t l o g i c s i m u l t a n e o u s o n s t a t e p r e v e n t i o n d r i v e c i r c u i t d r i v e c i r c u i t t s d o c p l e v e l s h i f t i n p u t l o g i c s i m u l t a n e o u s o n s t a t e p r e v e n t i o n d r i v e c i r c u i t d r i v e c i r c u i t t s d o c p l e v e l s h i f t 1 7 1 9 2 0 2 1 2 2 1 8 2 3 2 4 9 1 1 1 2 1 4 1 3 1 0 1 5 1 6 m i c 1 m i c 2 m i c 3 u v l o _ v b u v l o _ v c c u v l o _ v b u v l o _ v c c u v l o _ v b h o 1 l o 1 h o 2 l o 2 h o 3 l o 3 3 0
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 16 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 8. pin - out diagram top view pin number pin name functions 1 fo1 u - phase fault output and shutdown signal input 2 ocp1 input for u - phase overcurrent p rotection 3 lin1 logic input for u - phase low - side gate driver 4 com1 u - phase logic ground 5 hin1 logic input for u - phase high - side gate driver 6 vcc1 u - phase logic supply voltage input 7 vb1 u - phase high - side flo a ting supply voltage input 8 hs1 u - phase high - side flo a ting supply ground 9 fo2 v - phase fault output and shutdown signal input 10 ocp2 input for v - phase overcurrent p rotection 11 lin2 logic input for v - phase low - side gate driver 12 com2 v - phase logic ground 13 hin2 logic input for v - phase high - side gate driver 14 vcc2 v - phase logic supply voltage input 15 vb2 v - phase high - side flo a ting supply voltage input 16 hs2 v - phase high - side flo a ting supply ground 17 fo3 w - phase fault output and shutdown signal input 18 ocp3 input for w - phase overcurrent p rotection 19 lin3 logic input for w - phase low - side gate driver 20 com3 w - phase logic ground 21 hin3 logic input for w - phase high - side gate driver 22 vcc3 w - phase logic supply voltage input 23 vb3 w - phase high - side flo a ting supply voltage input 24 hs3 w - phase high - side flo a ting supply ground 25 vbb positive dc bus supply voltage 26 w w - phase output 27 ls3 w - phase igbt emitter 28 vbb (pin trimmed) positive dc bus supply voltage 29 v v - phase output 30 ls2 v - phase igbt emitter 31 vbb (pin trimmed) positive dc bus supply voltage 32 u u - phase output 33 ls1 u - phase igbt emitter 1 33 25 24 1 33 25 24
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 17 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 9. typical application s cr filters and zener diodes should be added to your application as needed, so that you can: protect each pin against surge voltage s causing malfunctions; and avoid the ic being used under the conditions exceeding the a bsolute m aximum r atings , resulting in critical damage to itself . th en test all the pin s thoroughly under actual operati ng conditions to ensure that your application works flawlessly. figure 9 - 1 . typical application using three shunt resistor s c h i n 1 v c c m i c 1 v b 1 f o 1 o c p 1 l i n 1 c o m 1 h i n 1 v c c 1 h s 1 v b b w l s 3 v l s 2 u l s 1 c o n t r o l l e r i n t a / d 1 c o m v b 2 f o 2 o c p 2 l i n 2 c o m 2 h i n 2 v c c 2 h s 2 v b 3 f o 3 o c p 3 l i n 3 c o m 3 h i n 3 v c c 3 h s 3 v f o m i c 2 m i c 3 1 3 4 5 6 7 9 8 1 1 1 4 1 3 1 5 1 6 1 7 1 9 2 1 2 2 2 3 2 4 2 5 2 6 2 8 2 9 3 1 3 2 3 3 a / d 2 a / d 3 m 2 7 1 8 1 0 2 3 0 v d c l i n 1 h i n 1 l i n 2 h i n 2 l i n 3 h i n 3 r f o c f o c b o o t 1 c b o o t 2 c b o o t 3 r s 1 r s 2 r s 3 r o 1 r o 2 r o 3 c o 3 c o 2 c o 1 d r s 3 d r s 2 d r s 1 c d c c s d z c p 1 c p 2 c p 3 d b o o t 1 r b o o t 1 d b o o t 2 r b o o t 2 d b o o t 3 r b o o t 3 c v c c 1 c l i n 1 c v c c 2 c h i n 2 c l i n 2 c v c c 3 c h i n 3 c l i n 3 u 1 s c m 1 2 0 0 m f s e r i e s 1 2 2 0
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 18 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 9 - 2 . typical application using shingle shunt resistor c h i n 1 v c c m i c 1 v b 1 f o 1 o c p 1 l i n 1 c o m 1 h i n 1 v c c 1 h s 1 v b b w l s 3 v l s 2 u l s 1 c o n t r o l l e r i n t a / d c o m v b 2 f o 2 o c p 2 l i n 2 c o m 2 h i n 2 v c c 2 h s 2 v b 3 f o 3 o c p 3 l i n 3 c o m 3 h i n 3 v c c 3 h s 3 v f o m i c 2 m i c 3 1 3 4 5 6 7 9 8 1 1 1 4 1 3 1 5 1 6 1 7 1 9 2 1 2 2 2 3 2 4 2 5 2 6 2 8 2 9 3 1 3 2 3 3 m 2 7 1 8 1 0 2 3 0 v d c l i n 1 h i n 1 l i n 2 h i n 2 l i n 3 h i n 3 r f o c f o c b o o t 1 c b o o t 2 c b o o t 3 r s r o c o d r s c d c c s d z c p 1 c p 2 c p 3 d b o o t 1 r b o o t 1 d b o o t 2 r b o o t 2 d b o o t 3 r b o o t 3 c v c c 1 c l i n 1 c v c c 2 c h i n 2 c l i n 2 c v c c 3 c h i n 3 c l i n 3 u 1 s c m 1 2 0 0 m f s e r i e s 1 2 2 0
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 19 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 10. external dimensions 10.1. lf2552 5 x p 1 . 2 7 = 6 . 3 5 5 x p 1 . 2 7 = 6 . 3 5 8 x p 5 . 1 = 4 0 . 8 ( 2 . 6 ) ( 2 . 6 ) m a x 1 . 2 c c 2 . 5 7 1 . 2 7 3 . 7 3 . 2 4 1 . 2 7 3 . 7 d d 1 . 2 7 3 . 7 5 x p 1 . 2 7 = 6 . 3 5 ( 3 8 . 6 ) ( 1 1 . 6 ) 1 . 2 0 . 2 4 7 0 . 3 3 . 2 0 . 1 5 1 9 0 . 3 4 3 . 3 0 . 3 2 . 0 8 0 . 2 0 . 5 0 . 5 a a b b ( 5 ? ) ( 5 ? ) 4 . 4 0 . 3 2 + 0 . 5 0 1 1 . 2 0 . 5 1 7 . 2 5 0 . 5 1 5 . 9 5 0 . 5 1 1 . 4 5 0 . 5 1 2 . 2 5 0 . 5 + 0 . 2 - 0 . 1 0 . 6 + 0 . 2 - 0 . 1 2 0 . 5 + 0 . 2 - 0 . 1 0 . 5 + 0 . 2 - 0 . 1 c - c b - b 0 . 7 0 . 5 1 . 2 + 0 . 2 - 0 . 1 + 0 . 2 - 0 . 1 + 0 . 2 - 0 . 1 0 . 5 + 0 . 2 - 0 . 1 a - a d - d m e a s u r e d a t b a s e o f p i n s u n i t : m m
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 20 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 10.2. lf255 7 (long lead type) 0 . 6 0 . 6 2 1 4 1 4 . 8 ( 1 2 ) ( 1 1 ) 0 0 . 5 0 0 . 5 a a b b 4 . 4 0 . 3 + 0 . 2 0 1 5 . 9 5 0 . 6 1 1 . 4 5 0 . 6 1 2 . 2 5 0 . 6 1 7 . 2 5 0 . 6 5 x p 1 . 2 7 = 6 . 3 5 5 x p 1 . 2 7 = 6 . 3 5 8 x p 5 . 1 = 4 0 . 8 ( 2 . 6 ) ( 2 . 6 ) m a x 1 . 2 2 . 5 7 1 . 2 7 3 . 7 3 . 2 4 1 . 2 7 3 . 7 1 . 2 7 3 . 7 5 x p 1 . 2 7 = 6 . 3 5 ( 0 . 6 5 ) ( 1 1 . 5 ) ( 3 8 . 5 ) c c d d 4 7 0 . 3 1 . 2 0 . 2 3 . 2 0 . 1 5 1 9 0 . 3 4 3 . 3 0 . 3 2 . 0 8 0 . 2 + 0 . 2 - 0 . 1 0 . 6 + 0 . 2 - 0 . 1 2 0 . 5 + 0 . 2 - 0 . 1 0 . 5 + 0 . 2 - 0 . 1 c - c b - b 0 . 7 0 . 5 1 . 2 + 0 . 2 - 0 . 1 + 0 . 2 - 0 . 1 + 0 . 2 - 0 . 1 0 . 5 + 0 . 2 - 0 . 1 a - a d - d m e a s u r e d a t b a s e o f p i n s u n i t : m m
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 21 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 10.3. lf255 8 (wide lead - forming type) 5 x p 1 . 2 7 = 6 . 3 5 5 x p 1 . 2 7 = 6 . 3 5 8 x p 5 . 1 = 4 0 . 8 1 9 0 . 3 ( 2 . 6 ) m a x 1 . 2 0 . 5 0 . 5 c c 2 . 5 7 1 . 2 7 3 . 7 3 . 2 4 1 . 2 7 3 . 7 d d 1 . 2 7 3 . 7 5 x p 1 . 2 7 = 6 . 3 5 ( 3 8 . 6 ) ( 1 1 . 6 ) 2 a a b b ( 5 ) ( 5 ) ( 2 ) ( 1 3 . 6 ) ( 1 ) 4 7 0 . 3 1 . 2 0 . 2 4 3 . 3 0 . 3 3 . 2 0 . 1 5 1 5 . 9 5 0 . 5 1 4 . 7 5 0 . 5 1 1 . 4 5 0 . 5 4 . 4 0 . 3 1 7 . 2 5 0 . 5 1 1 . 2 0 . 5 0 + 0 . 5 2 . 0 8 0 . 2 + 0 . 2 - 0 . 1 0 . 6 + 0 . 2 - 0 . 1 2 0 . 5 + 0 . 2 - 0 . 1 0 . 5 + 0 . 2 - 0 . 1 c - c b - b 0 . 7 0 . 5 1 . 2 + 0 . 2 - 0 . 1 + 0 . 2 - 0 . 1 + 0 . 2 - 0 . 1 0 . 5 + 0 . 2 - 0 . 1 a - a d - d m e a s u r e d a t b a s e o f p i n s u n i t : m m
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 22 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 10.4. recommended pcb hole size 11. marking diagram branding area 1 33 25 24 1 p i n ~ 2 4 p i n 2 5 p i n ~ 3 3 p i n 1 . 1 1 . 4 24 1 part number lot number : y is the last digit of the year of manufacture ( 0 to 9 ) m is the month of t he year ( 1 to 9 , o , n or d ) d d is the day of the month ( 01 to 31 ) x is the c ontrol n umber scm 124 mf 33 25 japan ymddx
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 23 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 12. functional description s all the characteristic values given in th is section are typical values, unless they are specified as minimum or maximum. f or pin descriptions, this section employs a notation system that denotes a pin name with the arbitrary letter x , depending on context. t he u, v, and w phases are represented as the pin numbers 1, 2, and 3, respectively. thus, (the) vbx pin is used when referring to either of the vb1, vb2, or vb3 pin. also, when different pin names are mentioned as a pair (e.g., the vbx and hsx pins ), they are meant to be the pins in the same phase. 12.1. turning on and off the ic the procedures listed below provide recommen ded startup and shutdown sequences. to t urn on the ic properly , do not apply any voltage on the vbb, hin x , and lin x pins until the logic power supply, v cc , has reached a stable state ( v cc(on) 12.5 v). it is required to charge bootstrap capacitor s, c boot , up to full capacity at startup (see section 12.2.2 ) . to turn off the ic, set the hin x and lin x pins to logic low (or l ), and then decrease the vcc x pin voltage . 12.2. pin descriptions 12.2.1. u, v , and w these pins are the outputs of the three phases, and serve as connection terminals to the three - phase motor. the u, v , and w pins are internally connected to the hs1 , hs2 , and hs3 pin s, respectively . 12.2.2. vb1, vb2 , and vb3 these are the input s of the high - side flo a ting power suppl ies for the individual phases. voltages across the vb x and hs x pins sh ould be maintain ed within the recommended range (i.e., the l ogic s upply v oltage, v bs ) given in section 2 . i n each phase, a bootstrap capacitor , c boot , should be connected between the vbx and hsx pins. for proper startup , turn on the low - side transistor first, then charge the bootstrap capacitor , c boo t , up to its maximum capacity. satisfying the formulas below can provide optima l capacitance for the boo tstrap capacitors, c boot . note that whichever resulting value is larger should be chosen in order to deal with capacitance tolerance and dc bias characteristics. l(off) be the maximum off - time of the low - side transistor, measured in seconds, with the charging time of c boot excluded. even during the high - side transistor is not on , voltage on the bootstrap capacitor keeps decreasing due to power dissipation in the ic. when the vbx pin voltage decreases to v bs(off) or less, t he h igh - side u ndervoltage lockout (uvlo_vb) starts operating (see se ction 12.3.3.1 ). therefore, actual board testing should be done thoroughly to validate that vo ltage across the vbx pin maintain s over 12.0 v (v bs > v bs(off) ) during a low - frequency operation such as a startup period. as shown in figure 12 - 1 , in each phase, a bootstrap diode, d boot , and a current - limiting resistor, r boot , are placed in series between the vccx and the vbx pins. t he charging time of c boot , t c , is given by f o rmula ( 3 ) : boot is the optimized capacitance of the bootstrap capacitor , and r boot is the resistance of the current - limiting resistor (22 20 % ) . figure 12 - 1 . b ootstrap circuit figure 12 - 2 shows an internal level - shifting circuit that produces high - side output signals, ho x . a high - side output signal, ho x , begins to respond when an input signal, hin x , transits from low to high ( rising edge) or high to low (falling edge) . a nd a signal triggered on a rising edge is called set , whereas a signal triggered on a falling edge is called reset . either of these two signals, set or reset, is then transmitted to the high - side by the leve l - shifting circuit. finally, the sr flip - flop circuit feeds an o utput signal, q (i.e., ho x ) . figure 12 - 3 is a timing diagram describing how noise or other detrimental effects will improperly influence the m i c 1 v b 1 c o m 1 v c c 1 u l s 1 6 c b o o t 1 v c c d b o o t 1 r b o o t 1 v b b v d c 8 h s 1 3 1 3 2 m o r t o r 4 3 3 r s 1 c d c 7 c p h o l o u 1
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 24 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 level - shifting process. when a sharp voltage drop , which is affected by noise, between the vb x and hs x pins ( also denoted as vbx C hsx in the tables in previous sections) , occurs after the set signal generation, the next reset signal cannot be sent to the sr flip - flop circuit. and the state of the high - side output, hox , stays logic high (or h ) because the sr flip - flop does not respond. with the hox state being held high, the next linx signal can still turn on the low - side transistor and cause a simultaneously - on condition which may result in critical damage to the ic. to protect the vbx pin aga i nst such noise effect, add a bootstrap capacitor, c boot , in each phase. c boot should be placed near the ic and connect ed be tween the vbx and hsx pins with a minimal length of traces. to use an e lectrolytic capacitor, add a 0.01 f to 0.1 f bypass capacitor, c p , in parallel near other functional pins used for the same phase. figure 12 - 2 . internal level - shift ing circuit figure 12 - 3 waveforms at vbx C hsx voltage drop 12.2.3. hs1, hs2 , and hs3 these pins are the ground s of the high - side flo a ting suppl ies for each phase , and are connected to negative nodes of the bootstrap capacitor s , c boot . the hs1, hs2, and hs3 pin s are internally connected to the u, v , and w pin s, respectively . 12.2.4. vcc1, vcc2 , and vcc3 these are the logic supply pins f or the built - in pre - driver ics. the vcc1 , vcc2, and vcc3 pin s must be externally connected on a pcb because they are not internally connected. to prevent malfunction induced by supply ripples or other factors, put a 0.01 f to 0.1 f ceramic capacitor, c vcc , near other functional pins used for the same phase. to prevent damage caused by surge voltages , put a 18 v to 20 v zener diode , dz, between the vccx and comx pins. voltages to be applied between the vccx and comx pins should be regulated within the recommended operational ra n ge of v cc , given in section 2 . 12.2.5. com1, com2 , and com3 these are the logic ground pins for the built - in pre - driver ics. for proper control, e ach of them must be connected to the corresponding ground pin. the com1, com2, and com3 pins should be connected externally on a pcb because they are not internally connected. varying electric potential of ground can be a cause of improper operations; therefore, each connection point of these pins should be as close to the lsx pin as possible but separated from the p ower ground. moreover, extreme care should be taken when wiring so that c urrents from the power ground d o not af fect the comx pin. to reduce noise effects, connect these pins closely to shunt resistors , r s , at a single - point ground (or, a star ground) with trace s of a minimal length (see figure 12 - 4 ) . figure 12 - 4 . connections to ground pin h i n x i n p u t l o g i c p u l s e g e n e r a t o r c o m x s e t r e s e t h o x v b x h s x s r q u 1 h i n x s e t r e s e t v b x - h s x q 0 v u v h h 0 0 0 0 v u v h l c o m 1 v b b l s 3 l s 2 l s 1 c o m 2 c o m 3 v d c r s 1 r s 2 r s 3 c d c c s o c p 3 o c p 2 o c p 1 3 3 2 7 3 0 2 5 4 1 2 2 0 c r e a t e a s i n g l e - p o i n t g r o u n d ( a s t a r g r o u n d ) n e a r s h u n t r e s i s t o r s , b u t k e e p i t s e p a r a t e f r o m t h e p o w e r g r o u n d . c o n n e c t c o m 1 , c o m 2 , a n d c o m 3 o n a p c b . u 1
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 25 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 12.2.6. hin1, hin2, hin3 , lin1, lin2 , and lin3 these are the input pins of the internal motor drivers for each phase. t he hinx pin acts as a high - side controller, whereas the linx pin acts as a low - side controller. figure 12 - 5 shows an internal circuit diagram of the hinx or linx pin. thi s is a cmos schmitt trigger circuit with 22 k pull - down resistor and input logic is active high. input signals through the hinx C comx and the linx C comx pin s in each phase should be set within the ranges provided in table 12 - 1 , below. note that dead time setting must be done beca use the ic does not have a dead time generator. the higher pwm carrier frequency rises, the more switching loss increases. hence, the pwm carrier frequency must be set so that operational case temperatures and junction temperatures can have sufficient margins in the absolute maximum ranges specified in sectio n 1 . if the signals from the microcontroller become unstable, the ic may result in malfunction s. to avoid this event, control the outputs from the microcontroller output line should not be high impedance. also, if the traces between the microcontroller and both the hinx and linx pins are too long, the traces may be interfered b y noise. therefore, it is recommended to add an additional filter or a pull - down resistor near the the hinx or linx pin as needed . ( see figure 12 - 6 . here are filter circuit constants for reference: r in1 : 33 to 100 r in2 : 1 k to 10 k c in : 100 pf to 1000 pf extra attention should be paid when adding r in1 and r in2 to the traces . when they are connected each other, the input volta ge of the hinx and l inx pin s becomes slightly lower than the o utput voltage of the microcontroller . table 12 - 1 . input signals for hinx and linx pin s parameter in < 5.5 v 0 v < v in < 0.5 v input pulse width 0.5 s 0.5 s 1.0 s 1.5 s (scm1242mf 12.2.7. vbb this is the input pin for the main supply voltage, i.e., the positive dc bus. a ll of t he igbt collectors of the high - side are connected to this terminal. voltages between the vbb and comx pin s should be set within the recommended range of the main supply voltage, v dc , given in section 2 . to absorb surge voltages, put a 0.01 f to 0.1 f snubber capacitor, c s , near the vbb pin and an electrolytic capacitor, c dc , with a minimal length of pcb trace s to the vbb pin . h i n x ( l i n x ) c o m x 5 v 2 k 2 2 k u 1 r i n 1 r i n 2 c i n u 1 i n p u t s i g n a l c o n t r o l l e r h i n x ( l i n x ) s c m 1 2 0 0 m f
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 26 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 12.2.8. ls1, ls2 , and ls3 these are emitter pins of t he low - side igbt s . th e ls1, ls2, and ls3 pins are connected to the shunt resistors, r s . when connecting shunt resistors to these pins, such as for current detection , trace lengths from the shunt resistors to the ic should be as sho r t as practicable . otherwise, malfunctioning may occur because a longer circuit trace increases its inductance and thus increases its susceptibility to improper operations. for applications where long pcb traces are required, add a fast recovery diode, d r s , betw ee n the lsx and comx pins in ord er to prevent the ic from malfunctioning. figure 12 - 7 . connections to ls pin 12.2.9. ocp1, ocp2 , and ocp3 these pins serve as the inputs of t h e overcurrent protection (ocp) for the currents go through output transistors. section 12.3.4 provides further information about the ocp circuit configuration and its mechanism . 12.2.10. fo1, fo2 , and fo3 these pins opera te as fault signal outputs and shutdown signal inputs for each of the three phases. section s 12.3.1 and 12.3.2 explain these two functions in detail, respectively. figure 12 - 8 illustrates a schemat ic diagram of the fox pin and its peripheral circuit. because of its open - drain nature, each of th e fo x pin s should be tied by a pull - up resistor, r fo , to external power supply voltage, v fo . t he external power supply voltage, v fo , should rang e from 3.0 v t o 5.5 v. figure 12 - 10 shows a relation between the fox pin voltage and a pull - up resistance value . when a pull - up resistor, r fo , has a too small resistance value, the fox pin voltage at fault signal output becomes high due to the on - resistance of a built - in mosfet, q fo ( figure 12 - 8 ). therefore , it is recommended to use a 1 k to 22 k pull - up resistor when the low - level input threshold voltage of a microcontroller, v il , is set to 1.0 v. t o suppress noise, add a filter capacitor, c fo , near the ic with minimizing a trace length between the fox and comx pins. note that, howe ver, this additional filtering a llow s a delay time, t d(fo) , to occur , as shown in figure 12 - 9 . the delay time, t d(fo) , is a period of time which starts when the ic receives a fault flag turning on the internal mosfet, q fo , and continues until when the fox pin reaches its threshold voltage (v il ) of 1.0 v or below (put simply, until the time when the ic detects a logic low state , l). figure 1 2 - 11 shows how the delay time, t d(fo) , and the n oise filter capacitor, c fo , are related . to avoid the repetition of overcurrent protection (ocp) activations , the external microcontroller must shut off any input signal s to the ic within an ocp hold time, t p , which occurs after the mosfet (q fo ) turn - on. t p is 15 s where minimum v alue s of temperature characteristics are taken into account. (for more detail s , see section 12.3.4 .) when v il is set to 1.0 v, it is recommended to use a 0.00 1 f to 0.01 f noise filter capacitor, c fo , allowing a sufficient margin to deal with variations in characteristics. figure 12 - 8 . internal circuit diagram of fo x pin and its peripheral circuit figure 12 - 9 . fo x pin d elay time, t d(off) c o m 1 v b b l s 3 l s 2 l s 1 c o m 2 c o m 3 v d c r s 1 r s 2 r s 3 c d c c s 3 3 2 7 3 0 2 5 4 1 2 2 0 p u t a s h u n t r e s i s t o r n e a r t h e i c w i t h a m i n i m u m l e n g t h t o t h e l s x p i n . a d d a f a s t r e c o v e r y d i o d e t o a l o n g t r a c e . d r s 1 d r s 2 d r s 3 u 1 5 v 5 0 2 k 1 m b l a n k i n g f i l t e r o u t p u t s w t u r n - o f f a n d q f o t u r n - o n q f o 3 . 0 s ( t y p . ) v f o c f o i n t r f o u 1 f o x c o m x f o x p i n v o l t a g e q f o v i l t d ( f o ) o n 0
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 27 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 12 - 10 . fault signal voltage vs. pull - up resistor value, r fo figure 1 2 - 11 . d elay time , t d(f o ) vs. filter capacitor, c fo 12.3. protection functions this section describes the various protection circuits provided in the scm1200mf series . the protection circuits include: the u ndervoltage l ockout for power supply (uvlo) , the s imultaneous on - state prevention function , the overcurrent protection (ocp), and the thermal s hutdown (tsd). in case one or more of these protection circuits are activated, the fo pin outputs a fault signal and the external microcontroller stop s all operations of the three phases. t he external microco ntroller can also shut down the ic operations by inputting a fault si gnal to the fox pin. in the following function descriptions, hox denotes a gate input signal on the high - side transistor ; whereas lox denotes a gate input signal on the low - side transistor (see also the diagrams in section 7 .) . vbx C hsx refers to the voltages between the vbx pin and hsx pin. 12.3.1. fault signal output in case one or more of the following protection s are actuated, internal mosfet, q fo , turn s on and the fox pin becomes to logic low ( 0.5 v). 1) low - side u ndervoltage l ockout ( uvlo _vcc) 2) overcurrent p rotection (ocp) 3) simultaneous on - state prevention 4) thermal s hutdown (tsd) during the time when the fo x pin holds the logic low state, the high - and low - side transistors of each phase turn off. i n normal operation, t he fox pin holds an h state a nd outputs a 5 v signal. the fault signal output time of the fox pin at ocp activation is ocp hold time (t p ) of 26 s (typ.), fixed by a built - in feature of the ic itself (see section 12.3.4 ) . the fault signals are then sent to an interrupt pin (int) of the external microcontroller, and should be processed as an interrupt task to be done within the predetermined ocp hold time, t p . 12.3.2. shutdown signal input the fo1, fo2, and fo3 pin s also can be th e input pins of shutdown signals. when the fo x pin bec omes logic low , the high - and low - side transistors of each phase turn off. the voltages and pulse widths of the shutdown signals to be applied between the fox and comx pins are listed in table 12 - 2 . table 12 - 2 . shutdown signal s parameter in < 5.5 v 0 v < v in < 0.5 v input pulse width 0.5 s 0.5 s 0 0.1 0.2 0.3 0.4 0.5 0 2 4 6 8 10 fault signal voltage ( v) r fo ( k) t j = 25 c max. typ. min. 0 5 10 15 0.000 0.005 0.010 0.015 0.020 0.025 delay time, t d(fo) (s) c fo ( f) t j = 25 c max. typ. min. f o 1 i n t f o 2 f o 3 c o m r f o c f o 1 9 1 7 4 , 1 2 , 2 0 v f o u 1
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 28 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 12.3.3. undervoltage lockout for power supply ( uvlo ) i n case the gate - driving voltage of output transistors decreases, the steady - state power dissipation of the transistors increases and the ic may have permanent damage , in the worst case. to prevent this event, the scm1200mf series has the unde rvoltage lockout (uvlo) circuit for both of the high - and low - side power supplies in each controller ic (mic). 12.3.3.1. undervoltage lockout for high - side power supply ( uv lo_vb ) figure 12 - 13 shows operational waveforms of the undervoltage lockout operation for h igh - side power supply (i.e., uvlo_vb). when the voltage between the vbx and h sx pins ( vbx C hsx ) decreases to the logic operation stop voltage of high - side ( v bs(off) , 11.0 v ) , the uvlo_vb circuit in the corresponding phase activates and sets only hox signals to logic low. when the voltage between the vbx and h sx pins increases to the logic operation start voltage of high - side (v bs(on) , 11.5 v) , the ic releases the uvlo_vb condition. then, the hox signals become logic high at the rising edge of the first input command after the uvlo_vb release. the fox pin does not transmit any fault signals during the uvlo_vb activation . in addition, each of the vbx pins has a n internal uvlo_vb fi l ter of about 3 s , in order to prevent noise - induced malfunctions. figure 12 - 13 . operational waveforms of uvlo_vb 12.3.3.2. undervoltage lockout for low - side power supply (uvlo_vcc) figure 12 - 14 shows operational waveforms of the undervoltage lockout operation for low - side power supply (i.e., uvlo_v cc ). when the v cc x voltage decreases to the logic operation stop voltage of low - side ( v cc (off) , 11.0 v ) , the uvlo_v cc circuit in the corresponding phase activates and sets both of hox and lox signals to logic low. when the vccx voltage increases to the logic operation start voltage of low - side (v cc (on) , 11.5 v) , the ic releases the uvlo_v cc condition. t hen it resumes transmitting hox and lox signals according to the input commands on the hinx and linx pins. the fox pin becomes logic low during the uvlo_vcc activation . in addition, each of the v cc x pins has a n internal uvlo_v cc fi l ter of about 3 s , in order to prevent noise - induced malfunctions. figure 12 - 14 . uvlo_vcc o perational waveforms 12.3.4. overcurrent protection (ocp) figure 12 - 15 shows an internal circuit diagram of the ocp x pin , and ocp x pin peripheral circuit ry. the ocpx pin detects overcurrents with input voltage across external shunt resistor, r s . since t he ocpx pin is internally pulled - down , t he ocpx pin voltage increase s proportionally to a rise in the current running through the shunt resistor. figure 12 - 16 is a timing chart that represents l i n x h i n x v b x - h s x h o x l o x f o x v b s ( o f f ) v b s ( o n ) n o f o o u t p u t a t u v l o _ v b . 0 0 0 0 0 0 u v l o r e l e a s e u v l o _ v b o p e r a t i o n a b o u t 3 s h o r e s t a r t s a t p o s i t i v e e d g e a f t e r u v l o _ v b r e l e a s e . a b o u t 3 s l i n x h i n x v c c x h o x l o x f o x v c c ( o f f ) v c c ( o n ) l o r e s p o n d s t o i n p u t s i g n a l . 0 0 0 0 0 0 u v l o _ v c c o p e r a t i o n
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 29 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 operation waveforms at ocp. when the ocpx pin voltage increases to an overcurrent protection threshold vo ltage, v trip , of 0.50 v , and then keeps in that condition for a n overcurrent protection blanking time, t bk , of 1.65 s or longer , the ocp circuit starts operating. the enabled ocp circuit then shuts off the output transistors and puts the fox pin into a logic low stat e. even if the ocpx pin voltage falls below v trip , the ic keeps in a logic low state for a fixed ocp hold time ( t p ) of 26 s (typ.) . then, the output transistors operate according to input signal s . then, the output transistors operate according to input signal s . the ocp circuits in the scm1200mf series are used for detecting abnormal conditions, such as an output transistor shorted. therefore, motor operation must be stopped by the external microcontroller, which can receive and handle fault signals from the ic. otherwise, your application will be more likely to cause short circuit conditions repeatedly, thus the breakdown of the outp ut transistors. care should also be taken when using a 3 - shunt resistor system in your application. the ic running on the 3 - shunt resistor system only shuts off the output transistor in the phase where an overcurrent condition exists. and a fault signal is transmitted from the fox pin of the phase being under the overcurrent condition. as already shown in figure 12 - 12 , if all of the fox pins being used makes a short circuit, a fault signal sent from the corresponding phase can turn off the output transistors of all phases (see section 12.3.2 ). to place a shunt resistor in an actual application, users must set: the shunt resistor to have the resistance specified as shunt resistor, r s (see the recommended operating condition table, section 2 ); input voltages of t he ocpx pin to keep their levels within the range defined as the ocpx pin voltage, v ocp (see the absolute maximum rating table, section 1 ) ; and currents through output transistors to keep their levels under the rated output current (pulsed), i op (see the absolute maximum rating table, section 1 ) . because high - frequency switching currents flow through the shunt resistors, r s , choose a resistor that has low inductance and allows high power dissipation. when adding a cr filter ( a pair of a filter resistor , r o and a filter capacitor, c o ) to the ocpx pin, the following should be taken into account. time constants of r o and c o should be set to the values listed in table 12 - 3 . the larger the time constant, the longer the time that the ocpx pin voltage rises to v trip . and this may cause permanent damage to the transistors. consequently, the time constants given he re are determined in consideration of the total delay time the ic will have. t h e filter capacitor, c o , should also be placed near the ic, between the ocpx and comx pins with a minim al length of trace s . note that overcurrents are undetectable when one or mo re of the u, v, and w pins are shorted to ground (ground fault). in case either of these pins falls into a state of ground fault, the transistors may be destroyed. figure 12 - 15 . internal circuit diagram of ocpx pin and ocpx pin peripheral circuitry figure 12 - 16 . ocp o perational waveforms table 12 - 3 . recommend t ime constants for cr filter products recommend t ime constants scm124 mf scm125 mf 0.22 s or less scm126 mf 1 s or less v b b l s x c o m o c p x c o m x a / d r s r o c o d r s v t r i p 2 0 0 k b l a n k i n g f i l t e r o u t p u t s w t u r n - o f f a n d q f o t u r n - o n - + 1 . 6 5 s ( t y p . ) u 1 l i n x h i n x h o x l o x f o x 0 0 0 0 0 o c p x 0 v t r i p t b k t b k t d e l a y 0 . 3 s ( t y p . ) t p t b k h o r e s p o n d s t o i n p u t s i g n a l . f o r e s t a r t s a u t o m a t i c a l l y a f t e r t p .
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 30 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 12.3.5. simultaneous o n - state p revention when both of the hinx and linx pins receive logic high signals at once, the high - and low - side transistors turn on at the same time, allowing overcurrents to pass through. as a result, the switching transistors will be destroyed. in order to protect this event, the s imultaneous on - stat e prevention circuit is built into each of the controller ics. note that incorrect command input and noise interference are also largely responsible for such a simultaneous - on c ondition. whe n lo gic high signals are asserted on the hinx and linx pins at onc e, as shown in figure 12 - 17 , this function gets activated and turns the high - and low - side transistors off. then, the fox pin becomes a logic lo w state , and sends fault signals during this function activation . after the ic comes out of the s imultaneous on - state , " hox " and " lox " start responding in accordance with hinx and linx input commands again. in order to prevent malfunctions due to noise, the simultaneous on - state prevention circuitry has a filter of about 0.8 s. note that the function does not have a ny of dead - time programming circuit s . input signals to the hinx and lin pins must have proper dead times as defined in section 0 ). figure 12 - 17 . o perational waveforms of simultaneous o n - state prevention 12.3.6. thermal shutdown (tsd) the ic has t hermal s hutdown (tsd) circuits. figure 12 - 18 shows the tsd operational waveforms. in case of overheating, e.g., increased power dissipation due to overload, or an ambient temperature rise at the device, the ic shuts down the high - and low - side output transistors. thermal detection is m onitored by the mics (see section 7 ). when the temperature of the mic increases to t dh = 150 c or more, the corresponding tsd circuit is activated . when the temperature decreases to t dl = 120 c or less, the shut - down condition is released and the transistors resume operating according to input signals. when the t sd circuit s is being enabled, fox pin becomes logic low and transmits fault signals. note that junction temperatures of the output transistors thems elves are not monitored . do not use the tsd function as a prevention function against critical damage to the output transistors. figure 12 - 18 . tsd o perational waveforms a b o u t 0 . 8 s a b o u t 0 . 8 s l i n x h i n x h o x l o x f o x s i m u l t a n e o u s o n - s t a t e p r e v e n t i o n e n a b l e d 0 0 0 0 0 l i n x h i n x t j ( m i c ) h o x l o x f o x h o x r e s p o n d s t o i n p u t s i g n a l s . t d h t d l 0 0 0 0 0 0 t s d o p e r a t i o n
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 31 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 13. design notes this section also emplo ys the terminal notation syste m for pin names , described in the beginning of the previous section. 13.1. pcb pattern layout figure 13 - 1 shows a schematic diagram of a motor driver circuit. the motor driver circuit consists of current paths carrying high frequencies and high voltages, which also bring about negative influences on ic operation, noise interference, and power dissipation. therefore, pcb trace layouts and component placements play an important role in circuit designing. c urrent loops which carry high frequencies and high voltages should be as small and wide as you can , in order to maintain a low - impedance state. in addition, ground traces should be as wide and short as possible so that radiated emi levels can be reduced . figure 13 - 1 . high - frequency, high - voltage current paths 13.2. heatsink mounting considerations this section provides the guidelines for mounting a heatsink, as follows: it is recommended to use a pair of a metric screw of m3 and a plain washer of 7 mm ( ). use a torque scre wdriver to tighten the screws. tighten the two screws firstly up to about 30% of the maximum screw torque; then finally up to 100% of the prescribed maximum screw torque . p erfor m appropriate tightening within the range of screw torque defined in section 4 . when mounting a heatsink, it is recomm e nded to use silicone greases. if a thermally - conductive sheet or an electrically insulating sheet is used, package cracks m ay be occur ed due to crease s at screw tightening. therefore, thorough evaluations should be conducted before using these materials. when applying a silicon grease, there must be no foreign substances between the ic and a heatsink. extreme care should be taken not to apply a silicon grease onto any device pins as much as possible. the following requirements must be met for proper grease application: ? grease thickness : 100 m ? h eatsink flatness : 100 m ? when applying a silicon grease to a heatsink, it should be applied within the area indicated in figure 13 - 2 , below. figure 13 - 2 . r ecommended application area for thermal silicone grease 13.3. ic characteristics measurement considerations when measuring the breakdown voltage and/or leakage current of the transistors incorporated in the ic, the gate and emitt er of each transistor should have the same potential. moreover, care should be taken because the collectors are all internally connected to the vbb pin. the output (u, v, and w) pins are connected to the emitters of the corresponding high - side transistors; and the lsx pins are connected to the emitters of the low - side transistors. the gates of the high - side transistors are pulled down to the output (u, v, w) pins; similarly, the gates of the low - side transistors are pulled down to the comx pins. note that the output, ls, and comx pins must be connected appropriately before measuring breakdown voltage and/or leak current. otherwise the switching transistors may result in permanent damage. the figures below are the schematic circuit diagrams of a typical measurement circuit for breakdown voltage : figure 13 - 3 shows the high - side transistor (q 1h ) in u m i c 1 v b b w l s 3 v l s 2 u l s 1 m i c 2 m i c 3 2 6 2 9 3 2 m 2 7 3 0 v d c 2 5 3 3 h i g h - f r e q u e n c y , h i g h - v o l t a g e c u r r e n t l o o p s s h o u l d b e a s s m a l l a n d w i d e a s p o s s i b l e . g r o u n d t r a c e s s h o u l d b e w i d e a n d s h o r t . u 1 h e a t s i n k t h e r m a l s i l i c o n e g r e a s e a p p l i c a t i o n a r e a 3 . 1 3 . 1 3 7 . 6 u n i t : m m 5 . 8 5 . 8 m 3 m 3 s c r e w h o l e s c r e w h o l e
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 32 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 phase, and figure 13 - 4 shows the low - side tr ansistor (q 1l ) in u phase. a nd a ll the pins that are not represented in these figures are open. before conducting a measurement, be sure to isolate the ground of a measurement phase from those of other two phases. then, in each of the two separated phases, connect the lsx and comx pins each other at the same potential, and leave them unused and floated. figure 13 - 3 . t ypical measurement circuit of high - side transistor (q 1h ) in u phase figure 13 - 4 . typical measurement circuit of l ow - side transistor (q 1l ) in u phase 14. calculati ng power losses and estimating junction temperature s this section describes the procedures to: calculate power losses in a switching transistor ; and estimate junction temperatures. note that the following descriptions are applicable to the scm1200mf series, which is controlled by a three - phase sine - wave pwm driving strategy. the total power loss es in an igbt can be obtained by taking the sum of steady - state loss, p on , and switching loss, p sw . the following subsections contai n the mathematical procedures to calculate power losses in an igbt and its junction temperature. 14.1. igbt st eady - state loss, p on the steady - state loss in an igbt can be computed by using the v ce(sat) vs. i c curves, shown in section 15.3.1 . as shown in figure 14 - 1 , the followin g linear approximate equation can be obtained from t he curves : v ce(sat) = i c + . the slope and i ntercept of the linear approximate equation are used in formula ( 4 ) . table 14 - 1 lists the reference slope s and intercept s of the linear approximate equation at a half of output current, 0 to 0.5 i o . the values calculated with the linear approximation greatly differ at the point where i c is near zero. but in dissipation calculation, the difference is re garded as an error tolera nce. hence, the equation for the steady - state loss, p on , is: ce(sat) is the c ollector - to - e mitter s aturation v oltage o f the igbt in v, i c is the c ollector current of the igbt in a, and dt is the on - time duty cycle. cos is the motor power factor (0 to 1), i m is the e ffective motor current in a, is the slope of the linear approximate equation in the v ce(sat) vs. i c curve, and m i c 1 c o m 1 v b b w l s 3 v l s 2 u l s 1 c o m 2 c o m 3 m i c 2 m i c 3 2 0 3 1 2 7 3 0 q 1 h q 1 l q 2 h q 2 l q 3 h q 3 l 2 6 3 3 2 9 1 2 4 3 2 2 5 v u 1 m i c 1 c o m 1 v b b w l s 3 v l s 2 u l s 1 c o m 2 c o m 3 m i c 2 m i c 3 2 0 3 1 2 7 3 0 2 5 q 1 h q 1 l q 2 h q 2 l q 3 h q 3 l 2 6 3 3 v 2 9 1 2 4 3 2 u 1
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 33 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 is the intercept of the linear approximate equation in the v ce(sat) vs. i c curve. figure 14 - 1 . l inear approximate equation of v ce(sat) vs. i c curve table 14 - 1 . reference s lope s ( ) and intercept s ( ) of linear approximate equation at 0 to 0.5 i o in v ce(sat) C i c curve part number 25 c 125 c 14.2. gbt switching loss, p sw the switching loss in an igbt can be calculated by formula ( 5 ) , letting i m be the e ffective current value of a motor : dc is the m ain power s upply v oltage in v (i.e., the vbb pin input voltage), e on (i m ) is the turn - on loss at i m in j, and e off (i m ) is the turn - off loss at i m in j. for e on (i m ) and e off (i m ) , see also section 15.3.2 . 14.3. estimating junction temperature of igbt the junction t emperature of an igbt, t j , can be estimated with formula ( 6 ) , below: (j - c)q is the j unction - to - c ase thermal r esistance of the igbt product ( c/w ) , and t c is the c ase temperature ( c ), measured at the point shown in figure 3 - 1 . y = 0.108x + 0.831 y = 0.036x + 1.359 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 5 6 7 8 9 10 v ce(sat) (v) i c (a) vcc=15v 75 c 125 c 25 c
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 34 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15. typical characteristics 15.1. transient thermal resistance curves the f ollowing graphs represent transient thermal resistance (the ratios of transient thermal resistance), with steady - state thermal resistance = 1. 15.1.1. scm12 61 mf 15.1.2. scm12 42 mf , scm12 63 mf , scm1243mf 0.01 0.10 1.00 1 10 100 1000 10000 ratio of transient thermal resistance time (ms) 0.01 0.10 1.00 1 10 100 1000 10000 ratio of transient thermal resistance time (ms)
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 35 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.1.3. scm12 65 mf , scm1245mf 15.1.4. SCM1246MF , scm12 56 mf 0.01 0.10 1.00 1 10 100 1000 10000 ratio of transient thermal resistance time (ms) 0.01 0.10 1.00 1 10 100 1000 10000 ratio of transient thermal resistance time (ms)
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 36 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.2. performance curves of control parts figure 15 - 1 to figure 15 - 26 provide performance curves of the control parts integrated in the scm1200mf series, including variety - dependent characteristics and thermal characteristics. the term t j repres ents the junction temperature of the control part s . table 15 - 1 . typical characteristics of control part s figure number figure caption figure 15 - 1 logic supply current in three - phase operating, i cc vs. t j figure 15 - 2 logic supply current in three - phase operating, i cc vs. vccx pin voltage, v cc figure 15 - 3 logic supply current in single - phase operating ( hinx = 0 v), i bs vs. t j figure 15 - 4 logic supply current in single - phase operating ( hinx = 5 v), i bs vs. t j figure 15 - 5 logic supply current in single - phase operating ( hinx = 0 v), i bs vs. vbx pin voltage, v b figure 15 - 6 input current at high level ( hinx or lin x ) vs. t j figure 15 - 7 high level input signal threshold voltage, v ih vs. t j figure 15 - 8 low level input signal threshold voltage, v il vs. t j figure 15 - 9 high - side turn - on propagation delay vs. t j ( from hinx to hox ) figure 15 - 10 high - side turn - off propagation delay vs. t j ( from hinx to hox ) figure 15 - 11 low - side turn - on propagation delay vs. t j ( from linx to lox ) figure 15 - 12 low - side turn - off propagation delay vs. t j ( from linx to lox ) figure 15 - 13 minimum t ransmittable pulse width for high - side switching , t hin (min) vs. t j figure 15 - 14 minimum t ransmittable pulse width for low - side switching , t lin (min) vs. t j figure 15 - 15 typical output pulse width s , t ho , t lo vs. input pulse width s , t hin , t lin figure 15 - 16 fo x pin voltage in normal operation, v fo l vs. t j figure 15 - 17 logic operation start voltage, v bs (on) vs. t j figure 15 - 18 logic operation stop voltage, v bs (off) vs. t j figure 15 - 19 logic operation start voltage, v cc (on) vs. t j figure 15 - 20 logic operation stop voltage, v cc (off) vs. t j figure 15 - 21 uvlo_vb filter ing time vs. t j figure 15 - 22 uvlo_vcc filter ing time vs. t j figure 15 - 23 overcurrent protection threshold voltage, v trip vs. t j figure 15 - 24 blanking time, t bk + propagation delay , t d vs. t j figure 15 - 25 overcurrent protection hold time, t p vs. t j figure 15 - 26 f ilter ing time of simultaneous o n - s tate p revention f unction vs. t j
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 37 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 15 - 1 . logic supply current in three - phase operating, i cc vs. t j figure 15 - 2 . logic supply current in three - phase operating, i cc vs. vccx pin voltage, v cc figure 15 - 3 . logic supply current in single - phase operating ( hinx = 0 v), i bs vs. t j figure 15 - 4 . logic supply current in single - phase operating ( hinx = 5 v), i bs vs. t j figure 15 - 5 . logic supply current in single - phase operating ( hinx = 0 v), i bs vs. vbx pin voltage, v b figure 15 - 6 . input current at high level ( hinx or lin x ) vs. t j 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 - 30 0 30 60 90 120 150 i cc (ma) t j ( c ) max. typ. min. vcc=15v, hin=l, lin=l 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 12 13 14 15 16 17 18 19 20 i cc (ma) v cc ( v) hin=l, lin=l 30 c 25 c 125 c 0 50 100 150 200 250 - 30 0 30 60 90 120 150 i bs (a) t j ( c) vb=15v, hin=0v max. typ. min. 0 50 100 150 200 250 - 30 0 30 60 90 120 150 i bs (a) t j ( c) vb=15v, hin=5v max. typ. min. 0 20 40 60 80 100 120 140 160 180 12 13 14 15 16 17 18 19 20 i bs (a) v b (v) vb=15v 30 c 25 c 125 c 0 50 100 150 200 250 300 350 400 - 30 0 30 60 90 120 150 i in ( a ) t j ( c) in=5v max. typ. min.
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 38 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 15 - 7 . high level input signal threshold voltage, v ih vs. t j figure 15 - 8 . low level input signal threshold voltage, v il vs. t j figure 15 - 9 . high - side turn - on propagation delay vs. t j ( from hinx to hox ) figure 15 - 10 . high - side turn - off propagation delay vs. t j ( from hinx to hox ) figure 15 - 11 . low - side turn - on propagation delay vs. t j ( from linx to lox ) figure 15 - 12 . low - side turn - off propagation delay vs. t j ( from linx to lox ) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 - 30 0 30 60 90 120 150 v ih ( v) t j ( c) max. typ. min. 0.8 1.0 1.2 1.4 1.6 1.8 2.0 - 30 0 30 60 90 120 150 v il (v) t j ( c) max. typ. min. 0 100 200 300 400 500 600 - 30 0 30 60 90 120 150 high - side turn - on propagation delay (s) t j ( c) max. typ. min. 0 100 200 300 400 500 600 700 800 - 30 0 30 60 90 120 150 high - side turn - off propagation delay (s) t j ( c) max. typ. min. 0 100 200 300 400 500 600 - 30 0 30 60 90 120 150 low - side turn - on propagation delay (s) t j ( c) max. typ. min. 0 100 200 300 400 500 600 700 800 - 30 0 30 60 90 120 150 low - side turn - off propagation delay ( s ) t j ( c) max. typ. min.
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 39 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 15 - 13 . minimum t ransmittable pulse width for high - side switching , t hin(min) vs. t j figure 15 - 14 . minimum t ransmittable pulse width for low - side switching , t lin(min) vs. t j figure 15 - 15 . typical output pulse width s , t ho , t lo vs. input pulse width s , t hin, t lin figure 15 - 16 . fo x pin voltage in normal operation, v fo l vs. t j figure 15 - 17 . logic operation start voltage, v bs(on) vs. t j figure 15 - 18 . logic operation stop voltage, v bs(off) vs. t j 0 50 100 150 200 250 300 350 400 450 500 - 30 0 30 60 90 120 150 t hin(min) (ns) t j ( c) max. typ. min. 0 50 100 150 200 250 300 350 400 450 500 - 30 0 30 60 90 120 150 t lin(min) (ns) t j ( c) max. typ. min. 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 t ho, t lo (typ.) ( ns) t hin, t lin ( ns) t j =25 c , vcc=15v high side low side 0 50 100 150 200 250 300 - 30 0 30 60 90 120 150 v f ol ( mv) t j ( c) fo pull up voltage=5v, r fo =3.3k , fo is low status max. typ. min. 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 - 30 0 30 60 90 120 150 v bs(on) (v) t j ( c) max. typ. min. 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 - 30 0 30 60 90 120 150 v bs(off) (v) t j ( c) max. typ. min.
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 40 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 15 - 19 . logic operation start voltage, v cc(on) vs. t j figure 15 - 20 . logic operation stop voltage, v cc(off) vs. t j figure 15 - 21 . uvlo_vb filter ing time vs. t j figure 15 - 22 . uvlo_vcc filter ing time vs. t j figure 15 - 23 . overcurrent protection threshold voltage, v trip vs. t j figure 15 - 24 . blanking time, t bk + propagation delay , t d vs. t j 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 - 30 0 30 60 90 120 150 v cc(on) ( v) t j ( c) max. typ. min. 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 - 30 0 30 60 90 120 150 v cc(off) (v) t j ( c) max. typ. min. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 - 30 0 30 60 90 120 150 uvlo_vb ?? (s) t j ( c) max. typ. min. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 - 30 0 30 60 90 120 150 uvlo_vcc ?? (s) t j ( c) max. typ. min. 460 470 480 490 500 510 520 530 540 - 30 0 30 60 90 120 150 v trip (mv) t j ( c) max. typ. min. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 - 30 0 30 60 90 120 150 t bk + t d (s) t j ( c) max. typ. min.
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 41 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 15 - 25 . overcurrent protection hold time, t p vs. t j figure 15 - 26 . f ilter ing time of simultaneous o n - s tate p revention f unction vs. t j 15.3. performance curves of output parts 15.3.1. output transistor performance curves 15.3.1.1. scm12 6 1m figure 15 - 27 . igbt v ce(sat) vs. i c figure 15 - 28 . f reewheeling diode v f vs. i f 0 5 10 15 20 25 30 35 40 45 50 - 30 0 30 60 90 120 150 t p (s) t j ( c) max. typ. min. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 - 30 0 30 60 90 120 150 filtering time of simultaneous on - state prevention function (s) t j ( c) max. typ. min. 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 5 6 7 8 9 10 v ce(sat) (v) i c (a) vcc=15v 75 c 125 c 25 c 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 5 6 7 8 9 10 v f (v) i f (a) 25 c 75 c 125 c
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 42 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.1.2. scm1242mf , scm1263mf , scm1243mf figure 15 - 29 . igbt v ce(sat) vs. i c figure 15 - 30 . f reewheeling diode v f vs. i f 15.3.1.3. scm1265mf , scm1245mf figure 15 - 31 . igbt v ce(sat) vs. i c figure 15 - 32 . f reewheeling diode v f vs. i f 15.3.1.4. scm1256mf , SCM1246MF figure 15 - 33 . igbt v ce(sat) vs. i c figure 15 - 34 . f reewheeling diode v f vs. i f 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 v ce(sat) (v) i c (a) 125 c 25 c 75 c vcc=15v 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 v f (v) i f (a) 75 c 125 c 25 c 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 12 14 16 18 20 v ce(sat) (v) i c (a) 75 c 125 c 25 c 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 12 14 16 18 20 v f (v) i f (a) 75 c 125 c 25 c 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 v ce(sat) (v) i c (a) 25 c 75 c 125 c 0.0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 v f (v) i f (a) 75 c 125 c 25 c
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 43 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2. s witching loss conditions: vbb = 300 v, half - bridge circuit with inductance load. 15.3.2.1. scm12 6 1 m f figure 15 - 35 . high - side switching loss (t j = 25 c ) figure 15 - 36 . low - side switching loss ( t j = 25 c ) figure 15 - 37 . high - side switching loss ( t j = 125 c ) figure 15 - 38 . low - side switching loss ( t j = 125 c ) 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vb=15v turn - on turn - off scm1261mf 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vcc=15v turn - on turn - off scm1261mf 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vb=15v turn - on turn - off scm12161mf 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vcc=15v turn - on turn - off scm1261mf
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 44 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2.2. scm1242mf figure 15 - 39 high - side switching loss (t j = 25 c ) figure 15 - 40 . low - side switching loss ( t j = 25 c ) figure 15 - 41 . high - side switching loss ( t j = 125 c ) figure 15 - 42 . low - side switching loss ( t j = 125 c ) 0 100 200 300 400 500 600 700 800 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vb=15v turn - on turn - off scm1242mf 0 100 200 300 400 500 600 700 800 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vcc=15v turn - on turn - off scm1242mf 0 100 200 300 400 500 600 700 800 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vb=15v turn - on turn - off scm1242mf 0 100 200 300 400 500 600 700 800 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vcc=15v turn - on turn - off scm1242mf
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 45 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2.3. scm1263mf figure 15 - 43 high - side switching loss (t j = 25 c ) figure 15 - 44 . low - side switching loss ( t j = 25 c ) figure 15 - 45 . high - side switching loss ( t j = 125 c ) figure 15 - 46 . low - side switching loss ( t j = 125 c ) 0 100 200 300 400 500 600 700 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vb=15v turn - on turn - off scm1263mf 0 100 200 300 400 500 600 700 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vcc=15v turn - on turn - off scm1263mf 0 100 200 300 400 500 600 700 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vb=15v turn - on turn - off scm12163mf 0 100 200 300 400 500 600 700 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vcc=15v turn - on turn - off scm1263mf
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 46 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2.4. scm1243m f figure 15 - 47 high - side switching loss (t j = 25 c ) figure 15 - 48 . low - side switching loss ( t j = 25 c ) figure 15 - 49 . high - side switching loss ( t j = 125 c ) figure 15 - 50 . low - side switching loss ( t j = 125 c ) 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vb=15v turn - on turn - off scm1243mf 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vcc=15v turn - on turn - off scm1243mf 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vb=15v turn - on turn - off scm1243mf 0 100 200 300 400 500 600 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e ( j) i c (a) vcc=15v turn - on turn - off scm1243mf
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 47 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2.5. scm12 65 mf figure 15 - 51 high - side switching loss (t j = 25 c ) figure 15 - 52 . low - side switching loss ( t j = 25 c ) figure 15 - 53 . high - side switching loss ( t j = 125 c ) figure 15 - 54 . low - side switching loss ( t j = 125 c ) 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vb=15v turn - on turn - off scm1265mf 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vcc=15v turn - on turn - off scm1265mf 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vb=15v turn - on turn - off scm12165mf 0 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vcc=15v turn - on turn - off scm1265mf
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 48 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2.6. scm1245mf figure 15 - 55 high - side switching loss (t j = 25 c ) figure 15 - 56 . low - side switching loss ( t j = 25 c ) figure 15 - 57 . high - side switching loss ( t j = 125 c ) figure 15 - 58 . low - side switching loss ( t j = 125 c ) 0 200 400 600 800 1000 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vb=15v turn - on turn - off scm1245mf 0 200 400 600 800 1000 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vcc=15v turn - on turn - off scm1245mf 0 200 400 600 800 1000 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vb=15v turn - on turn - off scm1245mf 0 200 400 600 800 1000 0 2 4 6 8 10 12 14 16 18 20 e ( j) i c (a) vcc=15v turn - on turn - off scm1245mf
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 49 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2.7. scm1256mf figure 15 - 59 high - side switching loss (t j = 25 c ) figure 15 - 60 . low - side switching loss ( t j = 25 c ) figure 15 - 61 . high - side switching loss ( t j = 125 c ) figure 15 - 62 . low - side switching loss ( t j = 125 c ) 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 e ( j) i c (a) vb=15v turn - on turn - off scm1256mf 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 e ( j) i c (a) vcc=15v turn - on turn - off scm1256mf 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 e ( j) i c (a) vb=15v turn - on turn - off scm1256mf 0 200 400 600 800 1000 1200 1400 1600 1800 0 5 10 15 20 25 30 e ( j) i c (a) vcc=15v turn - on turn - off scm1256mf
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 50 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.3.2.8. scm124 6 mf figure 15 - 63 high - side switching loss (t j = 25 c ) figure 15 - 64 . low - side switching loss ( t j = 25 c ) figure 15 - 65 . high - side switching loss ( t j = 125 c ) figure 15 - 66 . low - side switching loss ( t j = 125 c ) 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 e ( j) i c (a) vb=15v turn - on turn - off SCM1246MF 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 e ( j) i c (a) vcc=15v turn - on turn - off SCM1246MF 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 e ( j) i c (a) vb=15v turn - on turn - off SCM1246MF 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 e ( j) i c (a) vcc=15v turn - on turn - off SCM1246MF
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 51 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.4. allowable e ffective c urrent curves the following curves represent allowable effective currents in sine - wave driving under a three - phase pwm system. all the values listed in this section, including v ce(sat) of out put transistor s and switching losses, are typical values. operating conditions: vbb pin input volt age ( v dc ) = 300 v , vcc x pin input voltage ( v cc ) = 15 v , modulation index ( m ) = 0.9 , motor power factor ( cos ) = 0.8 , junction t emperature ( t j ) = 150 c . 15.4.1. scm1261mf figure 15 - 67 . allowable effective current, 10 a device ( f c = 2 khz ) figure 15 - 68 . allowable effective current, 10 a device ( f c = 16 khz ) 0 2 4 6 8 10 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c = 2 khz 0 2 4 6 8 10 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c = 16 khz
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 52 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.4.2. scm1242mf , scm1263mf , scm1243mf figure 15 - 69 . allowable effective current, 1 5 a device ( f c = 2 khz ) figure 15 - 70 . allowable effective current, 1 5 a device ( f c = 16 khz ) 0 5 10 15 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c ) scm1242,63mf scm1243mf f c = 2 khz 0 5 10 15 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c ) scm1242,63mf scm1243mf f c = 16 khz
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 53 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.4.3. scm12 65 mf , scm1245mf figure 15 - 71 . allowable effective current, 20 a device ( f c = 2 khz ) figure 15 - 72 . allowable effective current, 20 a device ( f c = 16 khz ) 0 5 10 15 20 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c = 2 khz 0 5 10 15 20 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c = 16 khz
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 54 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.4.4. scm12 5 6mf , scm124 6 mf figure 15 - 73 . allowable effective current, 30 a device ( f c = 2 khz ) figure 15 - 74 . allowable effective current, 30 a device ( f c = 16 khz ) 0 5 10 15 20 25 30 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c ) scm1256mf SCM1246MF f c = 2 khz 0 5 10 15 20 25 30 25 50 75 100 125 150 allowable effective current curves (arms) t c ( c ) scm1256mf SCM1246MF f c = 16 khz
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 55 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.5. short circuit soa (safe operating area) conditions: v dc 400 v , 13.5 v v cc 16.5 v , t j = 125 c , 1 pulse . 15.5.1. scm1261mf 15.5.2. scm1242mf , scm1263mf , scm1243mf 0 50 100 150 200 0 1 2 3 4 5 collector current, i c(peak) (a) pulse width (s) short circuit soa 0 50 100 150 200 250 0 1 2 3 4 5 collector current, i c(peak) (a) pulse width (s) short circuit soa
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 56 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 15.5.3. scm1265mf , scm1245mf 15.5.4. scm1256mf , SCM1246MF 0 50 100 150 200 250 300 0 1 2 3 4 5 collector current, i c(peak) (a) pulse width (s) short circuit soa 0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 collector current, i c(peak) (a) pulse width (s) short circuit soa
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 57 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 16. pattern layout example the following show the schematic diagrams of a pcb pattern layout example using an scm1200mf series device. for our recommended terminal hole size , see section 10.4 . figure 16 - 1 . top view figure 16 - 2 . bottom view
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 58 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 figure 16 - 3 . schematic circuit diagram of pcb pattern layout example v b 1 f o 1 o c p 1 l i n 1 c o m 1 h i n 1 v c c 1 h s 1 v b b w l s 3 v l s 2 u l s 1 v b 2 f o 2 o c p 2 l i n 2 c o m 2 h i n 2 v c c 2 h s 2 v b 3 f o 3 o c p 3 l i n 3 c o m 3 h i n 3 v c c 3 h s 3 1 3 4 5 6 7 9 8 1 1 1 2 1 4 1 3 1 5 1 6 1 7 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 8 2 9 3 1 3 2 3 3 2 7 1 8 1 0 2 3 0 r 4 c 2 0 c 1 c 2 c 3 r 1 r 1 1 r 1 2 r 1 3 c 1 3 c 1 2 / r t c 1 1 d 1 c 2 1 c 1 4 c 1 5 c 1 6 c 1 7 c 1 8 c 1 9 c 5 c 2 3 r 5 r 6 r 7 r 8 r 9 r 1 0 r 1 4 d 5 s v 4 1 2 3 s v 1 r 2 d 2 c 2 4 r 1 5 r 3 d 3 c 2 5 r 1 6 d 4 c 4 1 2 3 4 1 2 3 4 5 6 7 8 9 1 0 1 2 s v 2 s v 3 1 9 c 6 c 7 c 8 c 9 c 1 0
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 59 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 17. typical motor driver application this section contains information on the typical motor driver application listed in t he previous section , including a circuit diagram, specifications, and the bill of the materials used . motor driver specification s ic scm1242mf main supply voltage , v dc 300vdc (typ.) output power rating 1.35 kw circuit diagram see figure 16 - 3 . bill of materials symbol part type rating s symbol part type rating s c1 electrolytic 47 f, 50 v m f, 50 v m f, 50 v m f, 50 v k f, 50 v general 100 f, 50 v f, 50 v f, 50 v f, 50 v f, 50 v f, 50 v f, 50 v f, 50 v f, 50 v z = 20 v, 0.5 w c21 film 0.1 f, f, 50 v f, 50 v f, 50 v
scm1200mf series scm1200mf - dsj rev. 1. 1 sanken electric co.,ltd. 60 f eb . 1 9 , 2 01 6 http://www.sanken - ele.co.j p/en ? s anken e lectric c o ., l td. 2015 important notes all data, illustrations, graphs , tables and any other information included in this document as to sanken s products listed herein (the sanken products) are current as of the date this document is issued . all contents in this document are subject to any change without notice due to improvement, etc. please make sure that the contents set forth in this document reflect the latest revisions before use. the sanken products are intended for use as components of general purpose electronic eq uipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). prior to use of the sanken products, please put your signature, or affix your name and seal, on the specification documents of the san ken products and return them to sanken. i f considering use of the sanken products for any applications that require high er reliability (transportation equipment and its control systems, traffic signal control systems or equipment , disaster/crime alarm syst ems, various safety devices, etc.), you must contact a sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the sanken products and return them to sanken, prior to the use of the sanken products. any use of the sanken products without the prior written consent of sanken in any applications where extremely high reliability is required (aerospace equipment, nuclear power control systems, life support systems, etc.) is strictly prohibited. in the event of using the sanken p roducts by either (i) combining other products or materials therewith or (ii) physically, chemically or otherwise processing or treating the same , you must duly consider all possible risks tha t may result from all such uses in advance and proceed therewith at your own responsibility. although sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or def ect in semiconductor products at a certain rate. you must take, at your own responsibility , preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the sanken products are used, upon due consideration of a failure occurrence rate or derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the sanken p roducts. please refer to the relevant specification documents and sanken s official website in relation to derating. no a nti - radioactive ray design ha s been adopted for the sanken p roducts. no contents in this document can be transcribed or copied without sankens prior written consent. the c ircuit constant , operation examples, circuit examples, pattern layout examples, design examples , recommended examples and evaluation result s based thereon, etc., described in this document are presented for the sole pur pose of reference of use of the sanken products and sanken assume s no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, u sers or any third party , result ing from the foregoing . all technical information described in this document (the technical information) is presen ted for the sole purpose of reference of use of the sanken products and no license, express, implied or otherwise, is granted hereby under any intellectual property rights or any other rights of sanken. unless otherwise agreed in writing between sanken and you , sanken makes no warrant y of any ki nd, whether express or implied, as to the quality of the sanken products ( including the merchantability, or fitness for a particular purpose or a special environment thereof) , and any information contained in this document ( including its accuracy, usefulne ss, or reliability ) . in the event of using the sanken products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use of any particular controlled substances, including , but not limi ted to , the eu rohs directive , so as to be in strict compliance with such applicable laws and regulations . you must not use the sanken products or the technical information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. in the event of exporting the sanken products or the technical information, or providing them for non - residents, you must comply with all applicable export control laws and regulations in each country including the u.s. export administration regulations (ear) and the foreign exchange and foreign trade act of japan , and follow the procedures required by such applicable laws and regulations. sanken assumes no responsibility for any troubles, which may oc cur during the transportation of the sanken products including the falling thereof, out of sankens distribution network. although sanken has prepared this document with its due care to pursue the accuracy thereof, sanken does not warrant that it is error free and sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible error s or omissions in connection with the contents included herein . please refer to the relevant specification docu ments in relation to particular precautions when using the sanken products, and refer to our official website in relation to general instructions and directions for us ing the sanken products.


▲Up To Search▲   

 
Price & Availability of SCM1246MF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X